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ABSTRACT Changes in the gut microbiome are often associated with disease. One of the major goals in microbiome research is
determining which components of this complex system are responsible for the observed differences in health state. Most studies
apply a reductionist approach, wherein individual organisms are evaluated independently of the surrounding context of the mi-
crobiome. While such methods have yielded valuable insights into the microbiome, they fail to identify patterns that may be ob-
scured by contextual variation. A recent report by Schubert et al. [A. M. Schubert, H. Sinani, and P. D. Schloss, mBio 6(4):
e00974-15, 2015, doi: 10.1128/mBio.00974-15] communicates an alternative approach to the study of the microbiome’s
association with host health. By coupling a multifactored experimental design with regression modeling, the authors are able to
profile context-dependent changes in the microbiome and predict health status. This work underscores the value of incorporat-
ing model-based procedures into the investigation of the microbiome and illustrates the potential clinical transformations that
may arise through their use.

One of the grand objectives in microbiome research is under-
standing how these communities of microorganisms interact

with their environment. In the case of the human gut microbiome,
this knowledge is clinically valuable. Changes in the host’s health
status or the ecology of the gut can differentially influence the taxa
that comprise the microbiome and restructure the community
composition. Correspondingly, changes in microbiome structure
can affect the ecology of the gut or health of the host. Understand-
ing these interactions facilitates the development of clinical diag-
nostics in the case that community composition or the abun-
dances of specific taxa are predictive of disease. It can also yield
novel therapeutics, such probiotics, in the case that changes in
specific taxa are shown to modulate health.

The standard approach for characterizing these interactions is
to use tests of association. In this approach, the abundance of each
taxonomic group is quantified in a variety of microbiome samples
and then statistical tests are performed to determine whether
changes in the abundance of each group are related to changes in
the microbiome’s environment (e.g., test of correlation). This ap-
proach simplifies the discovery of potential interactions by ana-
lyzing each group independently of the others under the
assumption that meaningful interactions between taxa and their
environment will be robust despite variation in the surrounding
structure of the microbiome. This approach has been widely ap-
plied to microbiome studies, especially those with simple study
designs (e.g., case versus control), and has yielded tremendous
insight into how specific groups of taxa associate with environ-
mental parameters, including human disease and nutritional
state.

However, in complex systems, context may matter. Because
the aforementioned approach isolates the analysis of each taxon
from the rest, it fails to resolve complex associations that arise
through the interactions among taxa that comprise the commu-
nity. As a toy example, consider a taxon may that positively asso-
ciate with disease when Lactobacillus is absent from the commu-
nity but does not associate with disease when Lactobacillus is
present. This change in association could possibly be due to the
contextual nature of cellular phenotype; for example, Lactobacil-

lus may excrete a compound that changes the metabolic state of
the taxon to behave in a commensal rather than pathogenic man-
ner. The frequency of these types of interactions is not well under-
stood, and they may explain some of the inconsistent observations
made by different studies of the microbiome in similar disease
models (e.g., see reference 1). If our goal is to produce clinically
meaningful tools, we should seek to appropriately model these
context-dependent interactions.

The discovery of robust patterns of association between micro-
biota and their environment is important to our ability to combat
human disease, such as Clostridium difficile infection. C. difficile is
an environmentally acquired enteropathogen that causes debili-
tating and life-threatening diarrhea. The gut microbiome appears
to play an important role in protecting the host from infection.
C. difficile rates of infection are elevated in individuals who have
recently been treated with antibiotics, which has contributed to its
success as a nosocomial infectious agent. Additionally, manipula-
tion of the microbiome via transplantation from healthy donors is
a highly effective form of therapy, even in cases where all other
treatments have failed (2, 3). While we have learned quite a bit
about the microbiome’s relationship with C. difficile infection,
there appear to be complex relationships that influence health
outcomes. For example, it is not understood why antibiotic ad-
ministration results in disease in some patients but not others.
Nor is it understood why different types of antibiotics appear to be
associated with different disease risks. It has also been difficult to
determine which microbiota are associated with protecting
against C. difficile infection. For example, antibiotic intervention
is associated with a loss in C. difficile colonization resistance and a
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decrease in the abundance of Lachnospiraceae and Barnesiella (4),
while microbiome transplantations are instead associated with a
bloom in Bacteroidetes (5). These observations intimate that mul-
tiple groups of taxa may contribute to colonization resistance and
that the overall context of the community may be an important
factor in determining resistance.

In a recent report, Schubert et al. (6) discuss a series of inves-
tigations aimed at disentangling the complex web of interactions
that comprise the microbiome in order to model the context-
dependent associations between the microbiome and Clostridium
difficile infection. The authors adopted a mouse model study de-
sign that allowed them to tune a variety of experimental parame-
ters, including antibiotic treatment, the specific class and concen-
tration of antibiotic, exposure to C. difficile, and the time between
administration of the antibiotic and infection. By modulating
these various parameters, the authors were able to explore how
different types of community perturbations or different micro-
biome starting states affected the association between the abun-
dance of specific microbiota and resistance to C. difficile intestinal
colonization. To quantify these associations, the authors applied a
machine learning technique, known as a random forest regres-
sion, to mathematically model how antibiotic exposure, structural
variation in the microbiome, and time to infection interact to
influence C. difficile colonization resistance. Briefly, the authors
constructed a series of regression trees that predicted C. difficile
colonization levels based on an assemblage of bacterial popula-
tions and experimental parameters (e.g., antibiotic class). In ef-
fect, this model uses a complex series of “if, then” statements to
estimate C. difficile colonization levels given knowledge of the ini-
tial community composition and experimental parameters. The
model constructed by the authors was able to explain ~77% of the
variation observed in C. difficile colonization levels across sam-
ples. However, when the authors instead predicted whether an
individual would be colonized by C. difficile or not, they observed
an error rate of only 10.7%.

The analysis advanced by Schubert et al. (6) underscores the
importance of considering contextual interdependencies when
analyzing microbiome data. For example, they found that expo-
sure to different classes of antibiotics resulted in different commu-
nity compositions and that, within these resulting communities,
C. difficile colonization resistance was associated with different
taxa. Furthermore, they identified cases where the same taxon
produces opposite correlations with C. difficile colonization resis-
tance depending upon the antibiotic exposure. For example, an
operational taxonomic unit (OTU) from Bacteroides was posi-
tively associated with C. difficile colonization in streptomycin-
treated mice but was negatively associated in mice treated with
cefoperazone. Furthermore, according to their model, consider-
ing the interactions between taxa is important for predicting col-
onization resistance. The authors found that decreases in OTUs
associated with Porphyromonadaceae, Lachnospiraceae, Lactoba-
cillus, Alistipes, and Turicibacter are associated with increased sus-
ceptibility to infection when coupled with increases in Escherichia
or Streptococcus OTUs. When analyzed in isolation, many of these
taxa are not predictive of disease (e.g., an OTU within Akkerman-
sia) or are highly predictive under some conditions (e.g., an Esch-
erichia OTU in ampicillin-treated mice) but not others (e.g., the
same Escherichia OTU in streptomycin-treated mice). In short,
Schubert et al.’s (6) regression models provide a more robust pre-
diction of C. difficile colonization resistance than traditional anal-

yses would provide. Additionally, their findings indicate that the
phenotype of colonization resistance is complex and depends
upon a variety of parameters.

Schubert et al.’s (6) work holds important long-term implica-
tions. First, it can help advance personalized microbiome-based
medicine. For example, extensions of their models may ultimately
be used to screen clinical patients’ microbiomes prior to admin-
istration of antibiotics and predict their likelihood of developing
an infection. Similarly, they may help doctors select patient-
appropriate antibiotics or those that minimize the risk of infec-
tion. Furthermore, these models may help identify ideal micro-
biome donor matches to improve the efficacy of microbiome
transplantations for treating C. difficile infection. Second, these
models provide insight into those taxa that are consistently asso-
ciated with C. difficile resistance, which can improve the develop-
ment of effective probiotics based on a complex of organisms.
Finally, these models provide insight into how the microbiome
operates and can be used to establish hypotheses about the eco-
logical interactions between specific groups of taxa or how pertur-
bations to a community affect the functional relationship between
taxa. Of course, the application of these models would benefit
from additional investigation, such as the consideration of addi-
tional variables that may be relevant to colonization, including the
initial immunological state of the host. Furthermore, it may
be valuable to compare alternative regression or modeling ap-
proaches, with the aim of improving the accuracy of the predic-
tions. Finally, the extension of these models to clinical settings
requires validation in human populations, which are subject to
sources of variation beyond those in an experimental mouse
model, including genetic and nutritional variance.

Other studies have applied similar analytical methods to
investigate the complex of dependencies that influence the mi-
crobiome (7). For example, Belzer et al. identified groups of
enteric microbiota that exhibit consistent temporal patterns of
variation in response to Citrobacter rodentium-induced colitis
(10). Faith et al. applied linear models to understand how di-
etary variation perturbs a defined gut microbiome (8). Stat-
nikov et al. used multivariate models to predict psoriasis using
skin microbiome community profiles (9). These mathematical
model-based frameworks provide insight into the mechanisms
through which microbiomes operate and will likely be essential
in developing a comprehensive view of how hosts and their
microbiomes interact. Future investigations should similarly
consider establishing study designs that enable robust, predic-
tive modeling of the microbiome.
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